Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation.
نویسندگان
چکیده
To assess whether heterozygosity of the donor cell genome was a general parameter crucial for long-term survival of cloned animals, we tested the ability of embryonic stem (ES) cells with either an inbred or F(1) genetic background to generate cloned mice by nuclear transfer. Most clones derived from five F(1) ES cell lines survived to adulthood. In contrast, clones from three inbred ES cell lines invariably died shortly after birth due to respiratory failure. Comparison of mice derived from nuclear cloning, in which a complete blastocyst is derived from a single ES cell, and tetraploid blastocyst complementation, in which only the inner cell mass is formed from a few injected ES cells, allows us to determine which phenotypes depend on the technique or on the characteristics of the ES cell line. Neonatal lethality also has been reported in mice entirely derived from inbred ES cells that had been injected into tetraploid blastocysts (ES cell-tetraploids). Like inbred clones, ES cell-tetraploid pups derived from inbred ES cell lines died shortly after delivery with signs of respiratory distress. In contrast, most ES cell-tetraploid neonates, derived from six F(1) ES cell lines, developed into fertile adults. Cloned pups obtained from both inbred and F(1) ES cell nuclei frequently displayed increased placental and birth weights whereas ES cell-tetraploid pups were of normal weight. The potency of F(1) ES cells to generate live, fertile adults was not lost after either long-term in vitro culture or serial gene targeting events. We conclude that genetic heterozygosity is a crucial parameter for postnatal survival of mice that are entirely derived from ES cells by either nuclear cloning or tetraploid embryo complementation. In addition, our results demonstrate that tetraploid embryo complementation using F(1) ES cells represents a simple, efficient procedure for deriving animals with complex genetic alterations without the need for a chimeric intermediate.
منابع مشابه
Factors affecting the developmental potential of cloned mammalian embryos.
F recent scientific advances have captured the imagination of biologists and the general public like the prospect of animal cloning (1, 2). The procedure is elegantly simple. A nucleus from a mature cell is transferred into the cytoplasm of an enucleated egg and becomes ‘‘reprogrammed’’ to re-execute embryogenesis. That cloning has been successful at all seems biologically remarkable and has fo...
متن کاملComparison of tetraploid blastocyst microinjection of outbred Crl:CD1(ICR), hybrid B6D2F1/Tac, and inbred C57BL/6NTac embryos for generation of mice derived from embryonic stem cells.
Embryo electrofusion and tetraploid blastocyst microinjection is a modification of the traditional embryonic stem cell (ES cell)-based method to generate targeted mutant mice. Viability of tetraploid embryos is reportedly lower than with diploid embryos, with considerable interstrain variation. Here we assessed fetus and pup viability after ES cell microinjection of tetraploid blastocysts deriv...
متن کاملP-86: Production of Cloned Mice by Somaticm Cell Nuclear Transfer
Background: For several years, mammalian cloning by splitting an early embryo or nuclear transfer into oocytes method has been successfully performed. Cloning is now also possible using adult somatic cells. Although it has now been 15 years since the first cloned mammals were generated from somatic cells using nuclear transfer (NT), the success rate for producing live offspring by cloning is lo...
متن کاملCompletely ES Cell-Derived Mice Produced by Tetraploid Complementation Using Inner Cell Mass (ICM) Deficient Blastocysts
Tetraploid complementation is often used to produce mice from embryonic stem cells (ESCs) by injection of diploid (2n) ESCs into tetraploid (4n) blastocysts (ESC-derived mice). This method has also been adapted to mouse cloning and the derivation of mice from induced pluripotent stem (iPS) cells. However, the underlying mechanism(s) of the tetraploid complementation remains largely unclear. Whe...
متن کاملImpacts of in vitro thermal stress on ovine epididymal spermatozoa and the protective effect of β-mercaptoethanol as an antioxidant
Most aspects of reproductive function including spermatogenesis, oocyte growth and maturation, early embryonic development, fetal and placental growth, and lactation can be affected by thermal stress. Furthermore, it has been shown that oxidative stress involves in the pathology of thermal stress. Therefore, the aim of this study was to investigate the impacts of thermal stress on the ovine mat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 98 11 شماره
صفحات -
تاریخ انتشار 2001